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Probability distributions and spectra of the plane longitudinal nonlinear waves 
in an elastic body, the stresses in which are linearly dependent on the deform- 

ations, are computed. It is shown that the three-dimensional spectrum of the 
strongly nonlinear elastic waves decays, over a certain interval of the wave 

numbers, according to a power law. Such inertial intervals exist, as we know 
in the spectra of many nonlinear random waves arising e. g. in a turbulent 
motion of a fluid. The result obtained in the present paper indicates that a 
similar inertial interval can also be discovered in the spectra of the nonlinearly 
Interacting elastic waves accompanied by appreciable deformations. Exact 
expressions for the probability distributions and spectra of the random Rie - 

mannian waves were derived in [l - 6 1. 
1. Let us consider the plane longitudinal waves in an elastic body obeying 

Hook’s Law. In the Lagrangian formulation the coordinate I (a, t) of the fixed par- 
ticle of the body with the initial coordinate a satisfies, in this case, the linear 

equation (see e.g. [7] ) 
3X 2 a% 

==caap 
(1.1) 

In the Eulerian formulation the corresponding velocity u (x, t) and deformation 
J (2, t) fields satisfy the equations 

f+l+-CaJ~ (1.2) 

v (a, t) = $, 8X 
J (a, t) = aa - 1 

which, for sufficiently large deformations, are appreciably nonlinear. 
The basic aim of the present paper is to determine varying statistical charact - 

eristics of the nonlinear random fields v (r, t) and J (z, t) , using their known 
statistical properties prevailing at the initial instant of time. The search for the sta - 
tistical properties, and in particular for the moments of these fields, by means of direct 
averaging of Eqs. (1.2), encounters difficulties analogous to those arising in the problem 
of closure in the theory of turbulence (see e.g. [S]). The linear character of (1.1 )how- 
ever makes it possible to obtain the statistical properties of the random elastic waves in 
the Lagrangian formulation without much difficulty. It appears that the statistical 
properties of the waves of diverse physical nature expressed in the Lagrangian and 
Eulerian formulation are connected by certain very simply universal relations. Using 
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these relations we can determine, with the help of the known statistics of u (a,t) and 
J (a,t) the unknown statistical properties of the fields u (5, t) and .I (5, t). Such 

a Lagrangian approach is used in the present paper to analyze the statistics of the non- 
linear fields u (z, t) and J (z, t). 

2, Let us give some of the relations connecting the statistics of the one-dim - 
ensional random waves in the Lagrangian and Eulerian formulations, which shall be of 

use in determining the statistics of the nonlinear elastic waves. We note that similar 
relations were studied in [9 - 121 for a turbulent motion of an incompressible fluid. The 
latter relations however, cease to be applicable when the compressibility effects be - 
come appreciable (J + 0) . 

Let the probability density of the Lagrangian fields U, J and 2 , i.e. f[u, 
J, z; a, tl be known. Performing the computations analogous to those given in [13 ] 
and regarding cc (a, t) as a monotonous function of a , we can show that the proba- 
bility density of the Eulerian fields u (x, t) and J (z, t) which is w [v, J; X, tl 
is related to f by the following equation : 

w [u, J; z, t] = (1 + J) f IV, J, s; at] da (2.1) 
-cn 

For the nonlinear waves in a plasma, in the bundles of charged particles, and 
in many other cases, the formation of multistream motions is a common characteristic 
feature. When it happens, x (a, t) becomes a nonmonotonous function of a , and 

(2.1) is replaced by a more general formula [6, 13 ] 

11 + J 1 f f [u, J, 2; a, t] da = (2.2 1 

,$.i, P7N ; x, t) ; w[u, J; LC, t / n, I] 
n=1 

where w [u, J; x, t 1 n, NI is the Eulerian probability density of the n- th stream 
under the condition that N streams have formed at the point (5, t) . From this it 

follows that the mean number of streams is 

(N (JG t)> = ,ji, NP (1; 2, t) = 

m 

Sill ” 1 + J 1 f [v, J, 2; a, t] da dodJ 

(2.3) 

When the initial conditions are arbitrary, the solution of (1.1) can also be re- -__ 
presented by the nonmonotonous function z (a, t). However, Eqs. (l.l)and (1.2) 
cease to describe the elastic waves correctly even before 5 (a, t) becomes nonmono- 
tonous . For this reason, in the present case (iv) serves as the measure of the validity 

of the statistical results obtained. We shall assume that the expressions obtained below 
describe the statistics of the nonlinear elastic waves sufficiently well, as long as (N) 
isnearlyunity, this implying that the function x (a, t) is monotonous practically 

everywhere. 
In what follows, we shall assume that the functions u (5, t) and J (z, t) 
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are statistically homogeneous and single-valued in 5. The formulas (2.1 )and (2.2 ) will 
now assume a particularly simple form 

w Iv, J; tl = (1 + J) f Iv, J; tl (2.4) 

We shall also give an expression for the three-dimensional spectrum of the 
Eulerian field v (5, t) statistically homogeneous in r . We shall write it as follows: 

X 

G[i2, tl =Ii~k~& \j <u (G, t) u (52, t)> exp [ifi (51 - 41 h dh 
‘x 

Assuming 2 (a, t) to be a monotonous function of a and integrating over 
the Lagrangian coordinates, we obtain 

exp {in [5 (al, t) - z (&, ~)l~>~~l das 

where Al,s are solutions of the equations fX = z (a, t). Since 1 + J = 
aa: / &Z and on the finite time intervals we have 1 X - A 1 / A - 1 / X as 
X -+ my we write the last equation in the form 

exp [ ifi [J: (aI, t) - z (~2, tl,> dul duz 

The averaged integrand depends, by virtue of the statistical homogeneity, only on 
s = a, - u2, therefore we finally obtain 

00 

G [fi, tj = $ 1 <?$9 au ‘“at s* t, x 

exp {iQ [X (it) - J: (a + $, t)]}>ds 

(2.51 

3. Let us now analyze the Eulerian statistics of the plane elastic random waves. 

we shall consider, for definiteness, the case when J (a, 0) = 0 and u (a, 0) = 
~0 (a) is a statistically homogeneous function all probabilistic properties of which 

are known, we have 
a+ct 

’ 5 (a, t) = a + & \ u. (s) ds (3.1) 

a--st 

First we find the probabilistic point distribution w [u, J; tl of the fields 

LJ (5, t) and J (5, t) . In accordance with (2.4 ) and (3.1)) the distribution is 

connected with the initial two-point distribution w. [ul, u,; al - u,] of, u. (a) by 
the formula 

w Iv, J; tl = 2 (I + J) w. tu + J, J - u; 24 
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Let us quote the physical corollaries of this formula, i. e. the expressions for 
the mean kinetic energy density and mean square of the velocity of the noise elastic 
waves 

l/s (p (5, t) n2 ($9 t>> = 

Y, I(vo2 (a)> + (u, (a 4 ct) vo (a - ct)>l 

(u2 (x:, 4) = (pu2> + 

I/* c [(Vi)2 (a + ct) u0 (a - cl)) - (uo2 (a - ct) VO (a + ct)>l 

We assume here, for simplicity, that the body density in the undeformed state is unity 
everywhere, so that p = 1 / (1 i- J). For the random function u. (a) statistically 
reversible or symmet~ca~y d~ri~ted with respect to U = 0 , we have(u2) = <pu2>. 
When ct > I, where I is the correlation length of u,, (a), the elastic waves 
tend to the state of statistical equilibrium in which (u2 (x, m)) = (uo2> / 2. 

The analysis of more complex statistical characteristics of the elastic waves, 
such as their spectra, requires the knowledge of the distribution of J (a, t) and hence, 
according to (3.1). of the statistics of the linear functional of u. (n). This problem 
has a simple solution if v. (a) is a Gaussian random function. However, the functions 

2: (% ii and J (5, t) satisfying Eqs. (1.2) become, with the finite probabi~ty 

l%l>C t nonu~~e functions of J: and no longer describe correctly the behavior 
of the elastic waves. Nevertheless, if the mean number of their flows (N> is close 
to unity, the function v (a, t) is singlevalued for practically every value of 5, and 
the elastic waves are described by Eqs. (1.1) and (1.2 ) sufficiently well, 

Let us obtain (N) for the Gaussian u, (a) with the zero mean value and 
correlation function K [s]. From (2.3 ) it follows that 

D (t) = [K IO1 - K I2ctll / c2 
Even for D = 2 when the nonlinearity of Eq. (1.2 ) is appreciable and the 

fluctuations of J are of the order of unity, (N) z 1 .I?, i. e, the value is suf - 
ficiently near to unity. Therefore, we shall assume in the course of analysing the 
spectrum of u (x, t), that u, (a) is Gaussian ((Y,“) < 2~~). 

4. Let us analyse the three-dimensional spectrum of the Eulerian velocity 
field, of the plane elastic waves 

G 1% t] - s” (V (x, t) u (z + s, t), exp {ins} cls 
-m 

In order to avoid cumbersome manipulations, we shall investigate in detail 
only the equilibrium case of t--t 00. Assuming vO (a) to be Gaussian with the 
correlation ~nc~on iy fs] we have, in accordance with (2.5 1, 

G [Cl, tl = - & c d3;;sJ - exp (Sk - B (a) $Pj da + +- co.9 2cQnt exp { - (4 1) 

*$-pi [S,dS} ii K[s]- &P[s]}ds B(s) =&~(S-u)K,u,dn(~K 
[s]f&U). -co 0 0 
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The first term of the above expression describes the spectrum of the waves 
moving in the same direction, and the second term describes the combined spectrum 
of the waves moving in different directions. At sufficiently large t the latter is con- 

centrated in a narrow range Q which decreases with increasing t. This is due to 

the fact that even in the case of waves which are practically linear (K [Ol < c”) the 
Eulerian distance between the correlated values of the waves moving in various direct- 
ions differs from the Lagrangian distance 2ct by a random quantity which is much 

greater than 1. 
Let us consider the spectrum of the waves moving in the same direction 

m 

(4.2) 

Its Fourier transform is l-I (s) (u (z, t) u(z i- st)), where 

l-l (4 = 1 I, Z<bI-=gct 
.o, 1 s 1 2 ct 

is a function truncating the correlation when s N 2ct. The corresponding equili - 

brium spectrum for the case when the nonlinearity of (1.2 ) , i. e. the difference between 
the Lagrangian and Eulerian coordinates can be neglected, has the form 

The above spectrum is obtained by neglecting in (4.2) the term k? (s) Qz describing 
the difference between the Lagrangian and Eulerian coordinates. Expanding the right- 

hand side of (4.2) into a series in powers of B (s) Q2, we obtain an expression for 

the equilibrium velocity spectrum in powers of the nonlinear interactions. We can limit 

ourselves in such an expansion to the first few terms, provided that K 101 (( c2 or 

B (1) SP (( 1. Assuming in this expansion a = 0, we obtain the exact value of 

the spectrum at zero m 

G [OI = + C K 14 ds + &A j ~2 fsl ds . 

We note that the value at zero is retained for the complete spectrum (4.1). 
Above we have obtained the equjlibrium dispersion of the velocity ( v2 (5, 00)) = 

K 101 / 2. Using this together with G [O], we can determine the effective cor- 

relation length of the waves moving in the same direction for ct > 2 

I, = G PI 1 OJ 
<va (JJ, 00)) = ’ + 2caK [O] s 

K2 [s] ds 
--m 

where 1 denotes the correlation length of u,, (a). Thus the nonlinearity leads to 

a reduction in the effective width Q2, = 1 / I, of the spectrum. We note that the 
width of the spectrum of the Riemannian wave remains unchangeable C41. 

When Q (B (E) Q2 > 1) are large, the spectmm (4.2 ) decays according to 

the universal power law. Using the saddle point method to compute the integral in 
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(4.1) , we obtain 

A similarasymptotics was obtained for the spectrum of the Riemannian waves 

in Cl ,4,14]. In [4] it was noted that the law G - 1 / Q3 is intimatelyconnected 

with the appearance of multistreaming. The power law spectrum however is formed 
even before the multistreaming appears and is inherent in any strongly nonlinear pertur- 

bation, To show this, we consider the spectrum in the case when v,, (a) = A sin ( 
pa i- cp) where cp denotes the random phase uniformly distributed over the interval 

LO, 27~1. When A ,( c , the waves in a rod will be nonlinear, but single-stream 
everywhere. In addition, as we have shown above, the spectrum has an inertial region 

in which it decays according to a power law. 
Performing the computations we obtain from (2.5 > 

b (n, t) = Ji+, (m) + Ji-, (m) + 2J,+, (m) J,-z (nz) 
z = (A / c) sinpct 

In the region 1 < TZ (( 1 / (1 - z) we have b (n, 0 - 1/ r/E [lS],so 
that G [n, tl - IZ-“” decays according to a power law. When n (1 -- z) 3 1 , 

the function b (n, t) decays exponentially. 

In conclusion we give a case in which the integral in (4.2 > can be computed 
exactly. Let 

(k / w - I s I), 
K [sl = o 1, IsIGh 

ISI >h 
Then 

G[Q] =,:.[I -exp(-F)cosflh] 

Here G [Q] also decays according to a power law G N 1 ! !A2 when $‘J -+ 00 , 
but in this case the law does not depend on the nonlinearity of (1.2) but on the nondif- 

ferentiability of the initial velocity u. (a). When k-t 0 , the spectrum G IS21 
transforms into an equilibrium spectrum of linearized equations. 

The author thanks A. N. Malakhov and S. N. Gurbatov for valuable comments. 
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